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Thermal relaxation model of surface director gliding in lyotropic liquid crystals
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The gliding of the nematic director at an isotropic surface in a lyotropic liquid crystal, induced by a magnetic
field, is theoretically analyzed by means of a thermal relaxation model. We formulate a master-equation
describing the process and we derive a Fokker-Planck approximation from which simple analytical results are
obtained. The relaxation time is found to be inversely proportional to the square of the magnetic field, in
agreement with recent experimental measurements. The observed temperature dependence of the relaxation
time is explained in the framework of a simple mean-field model in which the surface energy is supposed to be
proportional to the bulk nematic order parameter.@S1063-651X~97!10303-8#

PACS number~s!: 61.30.Gd, 02.50.Ey
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I. INTRODUCTION

Nematic liquid crystals are uniaxial mesogens formed
rodlike elongated constituents@1#. These elementary con
stituents are molecules in the case ofthermotropics, where
the mesogenic behavior is controlled by the temperature,
micellesin the case oflyotropics@2#, in which the mesogenic
behavior is determined by the concentration. Nematic liqu
crystal samples can be oriented by applying external elec
or magnetic fields@1#. The resulting equilibrium directo
configuration depends on the boundary conditions at the
faces of the sample.

In the past, the anchoring properties of thermotropic ne
atic liquid crystals have been thoroughly analyzed both th
retically and experimentally@3#. In particular, it has been
shown that in the case of polyvinyl-alcohol-rubbe
surfaces—giving a homogeneous weak planar anchorin
the experimental data are compatible with a zero value of
static friction torque@4#. This result, obtained for a particula
surface treatment, is actually more general. In fact, in th
motropic liquid crystals all the known surface orientation
effects are reversible: removing the distorting field, t
sample recovers the original orientational state@1#. On the
contrary, in lyotropic liquid crystals, it has been recen
observed that a slow gliding of a planar degenerate sur
orientation can be induced by an external orienting magn
field of the order of only a few kilogauss@5–7#. This irre-
versible process has been interpreted by means of a phe
enological model, by supposing that at the surface a bila
of amphiphilic molecules is present, with defects or chann
as in a micellar structure@5#. This model explains the ob
served dependence of the relaxation time on the amplitud
the applied magnetic field, but, in order to fit the order
magnitude of these relaxation times, one must introduce
effective surface viscosity connected to the bulk one by
macroscopic dimension of the objects that are suppose
rigidly participate to the surface orienting phenomenon.

In this paper we propose a microscopic approach to
surface gliding effect in terms of a thermally activated p
cess. According to this model, the micelles are rotationa
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pinned to the surface by a potential displaying success
local minima in correspondence with metastable orien
tional states. For simplicity, we shall assume that the pot
tial is periodic, with equispaced minima separated by
same potential barrierU0 @see Fig. 1~a!#. In the absence of
external orienting fields, the surface micelles rotate aga
the potential barriers with an attempt frequencyt0

21 and they
succeed in overcoming the barrier with a ratet21

5t0
21exp@2U0 /(KBT)#!t0

21. During the jump from one
metastable state to the adjacent one, a bunch of phono
radiated, leading to an irreversible process. These jumps
rise to a uniformdiffusion, which is contrasted, as we sha
see in the following, by the elasticity of the nematic liqu
crystal. An equilibrium surface distribution of angles at t
surface results, which is rotationally invariant: the mean s
face twist angle depends only on the initial conditions. In t
presence of an external magnetic field the rotational sym
try of the surface potential is broken@see Fig. 1~b!#: the
transition probability for rotation in the direction of the fiel
is higher than in the opposite direction. Hence adrift of the
initial probability distribution in the direction of the field
occurs, giving rise to the gliding process. The relaxat
times are expected to be much longer than the character
thermal equilibration timet, as they result from the sma
imbalance of the potential barriers introduced by the pr
ence of the field. This model of the surface gliding is rem
niscent of the solid friction model involving the pinning be
tween the asperities of two solid surfaces in contact@8#.

In Sec. II we derive a mean-field model for the surfa
molecular energy. A master equation describing the glid
process is formulated in Sec. III along with a Fokker-Plan
approximation in the continuum limit. Numerical and a
proximate analytical results are discussed in Sec. IV:
dependence of the relaxation time on the applied magn
field is obtained. The temperature dependence of the re
ation time is discussed in Sec. V in the framework of
mean-field approach. A comparison with the experimen
data is presented, showing good agreement. In Sec. VI
summarize our results and outline some possible genera
tions.
4314 © 1997 The American Physical Society
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55 4315THERMAL RELAXATION MODEL OF SURFACE . . .
II. SURFACE MOLECULAR ENERGY MODEL

Let us consider a semi-infinite nematic lyotropic sam
extending in the regionz.0 of a Cartesian coordinate fram
with the z50 plane coincident with an isotropic solid su
strate. A magnetic fieldH is applied parallel to the (x,y)
substrate plane at an angleuH with respect to thex axis. We
suppose that the nematic lyotropic sample can be modele
an assembly of layers, parallel to the solid substrate, ha
a thicknessl comparable with the molecular short diamet
Each layer is labeled with an indexi50,1,2,. . . , where the
zeroth layer is the one in contact with the substrate.

We make an Ising-like mean-field model@9# for the inter-
action between the layers. Therefore, for a given bulk la
i.0, we write the total energy per unit surfacegi as

gi52J@~^n̂i&•^n̂i11&!21~^n̂i&•^n̂i21&!2#

2J8(
k51

N

~ n̂i
~k!
•^n̂i&!22

1

2

xam

NA(
k51

N

~ n̂i
~k!
•H!2. ~2.1!

Here n̂i
(k) is the nematic director for thekth micelle in the

i th layer; ^n̂i& is its average in the layer;J is the coupling
constant between adjacent layers;J8 is the self-coupling in
each layer, favoring a homogeneous orientation;xam is the
micellar diamagnetic anisotropy, which we suppose posit
and finally,N is the number of micelles in each layer an

FIG. 1. Schematic representation of the surface potential in
~a! absence and~b! presence of an orienting magnetic field. A
extra elastic contribution is actually present, which contrasts w
the diffusion in the absence of field.
as
g
.

r

;

A the area occupied by each micelle. Similarly, we can w
the total energy per unit surfaceg0 of the layer in contact
with the solid substrate as

g052J~^n̂0&•^n̂1&!22J8(
k51

N

~ n̂0
~k!
•^n̂0&!2

2
1

2

xam

NA(
k51

N

~ n̂0
~k!
•H!21U0 , ~2.2!

whereU0 accounts for the interaction between the surfa
layer and the substrate.

In the following we assume that all the micelles lie ever
where parallel to the (x,y) plane, such that

n̂i
~k!5cosu i

~k!x̂1sinu i
~k!ŷ, ~2.3a!

^n̂i&5cosū i x̂1sinū i ŷ, ~2.3b!

wherex̂ andŷ are thex- andy-axis unit versors, respectively
Therefore,

(
k51

N

~ n̂i
~k!
•^n̂i&!25N^cos2~u i2 ū i !&, ~2.4a!

(
k51

N

~ n̂i
~k!
•Ĥ!25NH2^cos2~u i2uH!&. ~2.4b!

We now make the expansion

ū i61> ū i6
dū i
dz

l , ~2.5!

from which it follows that

~^n̂i&•^n̂i61&!25cos2~ ū i2 ū i61!>12S dū i
dz D

2

l 2. ~2.6!

Consequently, apart from inessential constants,

gi52Jl2S dū i
dz D

2

2J8N^cos2~u i2 ū i !&

2
1

2

xam

A
H2^cos2~u i2uH!& ~2.7!

and

g05Jl2S dū0
dz D 22J8N^cos2~u02 ū0!&

2
1

2

xam

A
H2^cos2~u02uH!&1U0. ~2.8!

To connect the microscopic parameters entering in E
~2.7! and~2.8! with the usual macroscopic constants appe
ing in the framework of the continuum elastic theory@10#,
we write

u i
~k!5 ū i1Du i

~k! , ~2.9!

e

h
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where by definition̂ Du i&50, such that

^cos2~u i2 ū i !&>12^Du i
2& ~2.10!

and

^cos2~u i2uH!&5^cos2~ ū i2uH1Du i !&

>^cos2~ ū i2uH!2sin@2~ ū i2uH!#Du i&

5cos2~ ū i2uH!. ~2.11!

Consequently, the total energy per unit surface of thei th
bulk layer ~2.7! becomes, apart from inessential consta
terms,

gi52Jl2S dū i
dz D

2

1 J8N^Du i
2&2

1

2

xam

A
H2cos2~ ū i2uH!.

~2.12!

According to the continuum elastic theory, in the on
constant approximation the bulk energy density is@1#

f5
1

2
K~“u!22

1

2
xaH

2cos2~u2uH!, ~2.13!

whereK is the usual Frank elastic constant andxa the dia-
magnetic anisotropy. In our geometry, whereu mainly de-
pends on the distancez from the surface, we can make th
approximation

~“u!25S ]u

]xD
2

1S ]u

]yD
2

1S ]u

]zD
2

>
^Du2&
A

1S ]u

]zD
2

.

~2.14!

By comparing Eq.~2.12! with l f given by Eqs.~2.13! and
~2.14!, we arrive at

J5
K

4l
, J85

Kl

2NA
, xam5xaAl. ~2.15!

By neglecting in Eq.~2.13! the small variations of the
twist angleu in the (x,y) plane, standard calculations giv
for the actual stable profile@1#

S du

dzD
2

5
xaH

2

K
sin2~u2uH!. ~2.16!

Then, from Eq.~2.8! we have

g0A5^U&, ~2.17!

whereU can be identified as the total energy of a surfa
micelle

U5
1

4
xamH

2sin2~ ū02uH!1
1

2
xamH

2sin2~u02uH!

2
1

2
Kl cos2~u02 ū0!1U0 , ~2.18!

with U05U0A.
t

-

e

III. MASTER EQUATION
AND FOKKER-PLANCK APPROXIMATION

Let us suppose that the possible angular positions of
surface micelles are quantized according to

un5nd ~n50,61,62, . . . !. ~3.1!

We call Pn the probability to find a micelle with the orien
tationun . Evidently, the time evolutions of the probabilitie
obey themaster equation

dPn
dt

5Wn21,nPn211Wn11,nPn112~Wn,n211Wn,n11!Pn ,

~3.2!

whereWn,m is the transition probability between two adja
cent anglesun and um , with n2m561 ~see Fig. 1!. Ac-
cording to statistical mechanics@9#

Wm,m615
1

t0
expFU~md!2U@~m61/2!d#

KBT
G , ~3.3!

whereKB is the Boltzmann constant,T the absolute tempera
ture, and t0

21 the trial frequency. In Eq. ~3.4!
U@(m61/2)d#2U(md) represents the height of the barri
that a micelle has to overcome to jump between adjac
angular positions. Ford!1, according to Eq.~2.18!, we can
write

Wm,m615
1

t0
expS 2u07

1

2
$h2sin@2~um2uH!#

1k sin@2~um2 ū !#%d D , ~3.4!

where

u05
U0@~m61/2!d#2U0~md!

KBT
~3.5!

is the height of the barrier, which we suppose constant,
tween two adjacent angular positions due to the surface
choring energy;h andk are the normalized magnetic fiel
and elastic constant, respectively,

h25
xamH

2

2KBT
, k5

Kl

2KBT
. ~3.6!

In Eq. ~3.4! we have omitted the subscript 0 on the angles
the sake of simplicity. Note that in Eq.~3.4!, the term pro-
portional to h2 is connected with the drift of the surfac
micelles towarduH , whereas the term proportional tok con-
trasts with the diffusion. The height of the barrieru0 renor-
malizes the trial frequency, allowing us to define the char
teristic diffusion time

t5t0exp~u0!. ~3.7!

The average surface twist angleū in Eq. ~3.4! defines the
direction of the macroscopic surface director, which is t
eigenvector associated with the positive eigenvalue of
traceless surface order parameter
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q52 K n̂^ n̂2
1

2
IL , ~3.8!

whereI is the identity tensor. In the diagonal frame

q5S s 0

0 2sD , ~3.9!

where 0<s<1 is the two-dimensional surface order para
eter

s5A~2^cos2u&21!21^sin~2u!&2. ~3.10!

According to the previous definition

ū5tan21F ^sin~2u!&
2^cos2u&1s21G . ~3.11!

In the limit of small jumpsd→0, we can perform the
expansions

Pn615P~u!6
]P

]u
d1

1

2

]2P

]u2
d2, ~3.12a!

Wn61,n5W~u,u85u!6
]W

]u
d1

1

2

]2W

]u2
d2, ~3.12b!

Wn,n615W~u,u85u!6
]W

]u8
d1

1

2

]2W

]u82
d2, ~3.12c!

with

W~u,u85u!5
1

t
, ~3.13a!

]W

]u
5

1

2t

du

du
, ~3.13b!

]W

]u8
52

1

2t

du

du
, ~3.13c!

]2W

]u2
5

1

4t S dudu D 21 1

2t

d2u

du2
, ~3.13d!

]2W

]u82
5

1

4t S dudu D 22 1

2t

d2u

du2
, ~3.13e!

where, according to Eq.~2.18!,

u~u!5
U2U0
KBT

5
1

2
h2sin2~ ū2uH!1h2sin2~u2uH!

1k sin2~u2 ū !. ~3.14!
-

In this continuum-u approximation, the master equation~3.2!
therefore reduces to theFokker-Planckequation for the prob-
ability densityP(u,t),

]P
]t8

5
]

]uS dudu
PD1

]2P
]u2

, ~3.15!

with t85Dt the normalized time, whereD is the rotational
surface diffusion coefficient

D5 lim
d→0

d2

t
. ~3.16!

IV. ANALYTICAL AND NUMERICAL RESULTS

From the Fokker-Planck approximation~3.15!, the steady-
state solution@11# readily follows

Ps~u!5
exp@2u~u!#

E
0

p

exp@2u~u!#du

. ~4.1!

As expected, it is a Boltzmann distribution. For a sufficien
well-peaked distribution, we can set

ū>^u&5E
0

p

uP~u!du ~4.2!

such that, from Eq.~3.15!,

dū

dt8
52 K dudu L . ~4.3!

By neglecting the fluctuations@11#, one then arrives at the
approximate evolution equation of the average angle

dū

dt8
5h2sin@2~uH2 ū !#, ~4.4!

whose solution, forū(t850)50, is

ū~ t8!5uH2tan21@exp~22h2t8!tanuH#. ~4.5!

According to Eq. ~4.5!, the ~unnormalized! relaxation
time tH is inversely proportional to the square of the appli
magnetic field

tH5
1

Dh2
. ~4.6!

This H22 power law is in agreement with the experimen
findings @5–7#. In Sec. V we shall perform a quantitativ
comparison of our theoretical predictions with the expe
mental data obtained by Oliveira and co-workers@5–7#.

In Fig. 2 we show the steady-state probabilityPs obtained
by numerical integration of Eq.~3.2! in the absence of mag
netic field, for two values of the normalized elastic consta
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(k510, solid line;k5200, dashed line!. The average twist
angleū is evidently arbitrary and depends solely on the i
tial conditions. Ford sufficiently small~hered5p/100) this
numerical solution practically coincides with the analytic
solution ~4.1! of the Fokker-Planck continuum approxim
tion. According to Eqs.~3.14! and ~4.1!, the width of the
steady-state distribution is inversely proportional to t
square root of the elastic constant.

The time evolution of the average twist angleū is shown
in Fig. 3 for different values of the normalized magnetic fie
h and normalized elastic constantk and for the same value
d5p/100 as before, withuH5p/4 andū(t850)50, where
t85Dt is the previously defined normalized time. The initi
probability distributionP(t850,u) is taken as the steady
state solutionPs(u) in the absence of a magnetic field.
Fig. 3~a! the amplitude of the normalized magnetic field
h51. The long~short! dashed line is the numerical solutio
corresponding tok510 (k5200). The solid line is the ana
lytical approximate solution~4.5! of the Fokker-Planck equa
tion: it does not depend onk, i.e., on the width of the steady
state distribution, since we neglected the fluctuations
deriving Eq.~4.5!. As it is evident, the relaxation time some
how depends onk. However, this effect can be taken in
account by simply rescaling the magnetic fieldh: this is
shown by the circles in Fig. 3~a!, which correspond to the
analytical solution~4.5! with h850.95h. This rescaling ish
independent, as shown in Fig. 3~b!, in which h50.1. The
insets in Fig. 3 show the probability distribution for thre
successive values of time. For larger values of the magn
field h, the drift of the distribution is accompanied by
squeezing, while for smallerh the evolution is practically a
rigid translation. This is evident from Eqs.~3.14! and ~4.1!,
which show that under stationary conditions, whereū5uH ,
the width of the distribution is inversely proportional
Ah21k. However, as we shall see in the following, in pra
tical casesh2!k and therefore the field-induced squeezi
of the probability distribution is completely negligible.

V. TEMPERATURE BEHAVIOR AND COMPARISON
WITH THE EXPERIMENTAL DATA

The experimental data of the time evolution of the surfa
director gliding show a rather strong dependence of the

FIG. 2. Steady-state probability distributionPs for h50,
d5p/100, and two different values ofk: (k510, solid line;
k5200, dashed line!. The numerical solution of the master equ
tion and the analytical result of the Fokker-Planck approximat
coincide.
-

l

n

tic

e
e-

laxation time tH on temperature, close to the first-ord
clearing pointTc ~see Table II of Ref.@6#!. This dependence
cannot be explained by the temperature variation of the
magnetic anisotropyxa : in fact, according to Eq.~4.6!,
DtH /tH52Dxa /xa . Now xa decreases as the temperatu
increases, in a way essentially proportional to the bulk ne
atic order parameterS @1#; this would therefore give an in
crease in the relaxation timetH with temperature, contrary to
what is observed experimentally@6#. Moreover, for typical
variations of the nematic order parameter@1#, the effect due
to the temperature variations ofxa is about 20 times smalle
than the observed temperature variations oftH .

In order to explain this temperature dependence, we
sume that the depth of the potential wellu0 @see Eq.~3.5!#
depends on the nematic order parameterS. In the isotropic
phaseS50, we expectu050. For increasing values ofSwe
expectu0 to increase. Therefore, by expandingu0 in power
series ofS, the leading term expansion will be simply

u05aS. ~5.1!

n

FIG. 3. Time evolution of the average twist angleū as a func-
tion of the normalized timet8 for d5p/100 anduH5p/4. ~a!
h51 with k510 ~long-dashed line! and k5200 ~short-dashed
line!. The solid line~circles! is the analytical solution~4.5! with
h51 (h50.95). The inset shows the probability distributio
P(u,t8) corresponding to the long-dashed curve as a function
u for t850, 0.4, and 1.6~from left to right!. ~b! Same as~a!, but for
k510 andh50.1 ~long-dashed line!; the analytical solution is plot-
ted for h50.1 ~solid line! andh50.095 ~circles!. The probability
distributions in the inset are fort850, 41, and 163~from left to
right!.
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55 4319THERMAL RELAXATION MODEL OF SURFACE . . .
This mean-field approximation is similar to the behavior
the angular anchoring energy proposed in Ref.@12#.

In the nematic phase, forT,Tc , S is approximatively
given by @13#

S5DA12
T

T0
, ~5.2!

whereT02Tc>1 °C @1#. From Eqs.~5.1! and~3.7!, neglect-
ing the small temperature dependence ofxa , at first order in
T2Tc the characteristic diffusion timet varies with tem-
perature according to the linear dependence

t~T!5t~Tc!1b~T2Tc!, ~5.3!

where

b5
t~Tc!

2~T02Tc!
lnF t0

t~Tc!
G . ~5.4!

Consequently, the temperature dependence of the mag
relaxation time~4.6! describing the surface director gliding
written

tH~T!5tH~Tc!1bH~T2Tc!, ~5.5!

where

bH5
b

d2h2
. ~5.6!

The experimental results reported in@6# give
bH>256 s/°C21 for H58 kG. According to @14#,
xa51028 ~cgs units!, while the molecular densityn51/Al is
of the order of n>331019 cm23 @15#. Therefore, for
H58 kG we haveh2>2.631027. We note also thatl>60
Å @16#; hence, with the elastic constantK>1026 dyn,
k>8. We can estimate the elementary angular jumpd as the
ratio between the distancep between two pinning center
and the lengthL of a micelle; takingp>2 Å andL>100 Å
@16#, one obtainsd>p/L>231022 rad. The trial frequency
t0

21 is of the order of the molecular vibration frequencie
t0

21>1014 Hz @17#. With these values, from Eq.~5.6! we get
b>25.831029 s/°C21; consequently, from Eq.~5.4!, we
have t(Tc)>1029 s. Hence, at H58 kG, tH(Tc)
5t(Tc)/d

2h2>9.7 s. For Tc2T54 °C, then tH(T)
>234 s, in good agreement with the experimental va
tH(T)>250 s reported in Ref.@6#. The comparison with the
full data presented in Ref.@6# is shown in Fig. 4. We note
also that with these data atT5Tc we get a depth of the
potential well per micelle of the order ofu0KBT>0.3 eV,
which is a reasonable value for the interaction energy
tween one micelle and the substrate.

VI. CONCLUSION

In this paper we have proposed a microscopic descrip
of the surface gliding effect recently observed in lyotrop
liquid crystals in contact with amorphous solid substrat
This model is based on the theory of thermally activa
processes. The micelles are supposed to be pinned a
r

tic

,

e

-

n

.
d
the

surface by a periodic potential having equally spaced min
separated by barriers having the same height. The applica
of an external magnetic field induces a critical state that d
not correspond to an equilibrium situation and therefo
tends to relax. This phenomenon is well known in the case
magnetism as an ‘‘aftereffect’’ or ‘‘magnetic viscosity’’ an
in the case of superconductivity as the ‘‘creep of flow’’@18#.

We have given a formulation of the gliding process
terms of a master-equation describing the jumps between
jacent angular positions. In the continuum limit the mas
equation reduces to a Fokker-Planck partial differential eq
tion. Its steady-state solution gives the expected Boltzm
distribution, whereas the time evolution for the average o
entation has been obtained approximately by suitably
glecting the fluctuations. A comparison between the num
cal solution of the master equation with the approxim
analytical results has shown the substantial correctness o
latter. The relaxation time has been found to be invers
proportional to the square of the applied magnetic field,
experimentally observed. We have also developed a sim
mean-field description of the surface pinning potential tha
able to reproduce the observed temperature dependenc
the relaxation times.

A possible extension of our model is to consider a dis
bution of barrier heights centered around some mean va
such a distribution is expected to modify the details of t
time evolution of the average orientation, but not to chan
considerably the dependence of the relaxation time on
applied magnetic field. Our model could also be extended
Berreman-like geometric anchorings@19#, where the surface
anchoring has a geometrical contribution connected to
topography of the surface. In this case the pinning poten
should be substituted by the total elastic energy conne
with different surface geometries.
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FIG. 4. Comparison between the experimental data~squares!
and the theoretical prediction~full line! for the relaxation timetH as
a function of temperature. The error bars represent a 10% erro
the experimental data.
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