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Thermal relaxation model of surface director gliding in lyotropic liquid crystals
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The gliding of the nematic director at an isotropic surface in a lyotropic liquid crystal, induced by a magnetic
field, is theoretically analyzed by means of a thermal relaxation model. We formulate a master-equation
describing the process and we derive a Fokker-Planck approximation from which simple analytical results are
obtained. The relaxation time is found to be inversely proportional to the square of the magnetic field, in
agreement with recent experimental measurements. The observed temperature dependence of the relaxation
time is explained in the framework of a simple mean-field model in which the surface energy is supposed to be
proportional to the bulk nematic order paramef&1063-651X%97)10303-§

PACS numbsgs): 61.30.Gd, 02.50.Ey

I. INTRODUCTION pinned to the surface by a potential displaying successive
local minima in correspondence with metastable orienta-
Nematic liquid crystals are uniaxial mesogens formed bytional states. For simplicity, we shall assume that the poten-
rodlike elongated constituenfd]. These elementary con- tial is periodic, with equispaced minima separated by the
stituents are molecules in the casetloérmotropics where  same potential barridd, [see Fig. 18)]. In the absence of
the mesogenic behavior is controlled by the temperature, aneéixternal orienting fields, the surface micelles rotate against
micellesin the case ofyotropics[2], in which the mesogenic the potential barriers with an attempt frequengy" and they
behavior is determined by the concentration. Nematic liquid-succeed in overcoming the barrier with a rate*
crystal samples can be oriented by applying external electrie= rglexr[—Uol(KBT)Krgl. During the jump from one
or magnetic field§1]. The resulting equilibrium director metastable state to the adjacent one, a bunch of phonons is
configuration depends on the boundary conditions at the suradiated, leading to an irreversible process. These jumps give
faces of the sample. rise to a uniformdiffusion which is contrasted, as we shall
In the past, the anchoring properties of thermotropic nemsee in the following, by the elasticity of the nematic liquid
atic liquid crystals have been thoroughly analyzed both theoerystal. An equilibrium surface distribution of angles at the
retically and experimentally3]. In particular, it has been surface results, which is rotationally invariant: the mean sur-
shown that in the case of polyvinyl-alcohol-rubbed face twist angle depends only on the initial conditions. In the
surfaces—giving a homogeneous weak planar anchoring—presence of an external magnetic field the rotational symme-
the experimental data are compatible with a zero value of th&y of the surface potential is brokdrsee Fig. 1b)]: the
static friction torqud4]. This result, obtained for a particular transition probability for rotation in the direction of the field
surface treatment, is actually more general. In fact, in theris higher than in the opposite direction. Hencdrdt of the
motropic liquid crystals all the known surface orientationalinitial probability distribution in the direction of the field
effects are reversible: removing the distorting field, theoccurs, giving rise to the gliding process. The relaxation
sample recovers the original orientational stgig On the times are expected to be much longer than the characteristic
contrary, in lyotropic liquid crystals, it has been recently thermal equilibration timer, as they result from the small
observed that a slow gliding of a planar degenerate surfacenbalance of the potential barriers introduced by the pres-
orientation can be induced by an external orienting magnetience of the field. This model of the surface gliding is remi-
field of the order of only a few kilogaug$—7]. This irre-  niscent of the solid friction model involving the pinning be-
versible process has been interpreted by means of a phenomeen the asperities of two solid surfaces in conf&¢t
enological model, by supposing that at the surface a bilayer In Sec. Il we derive a mean-field model for the surface
of amphiphilic molecules is present, with defects or channelsnolecular energy. A master equation describing the gliding
as in a micellar structurgs]. This model explains the ob- process is formulated in Sec. Il along with a Fokker-Planck
served dependence of the relaxation time on the amplitude @fpproximation in the continuum limit. Numerical and ap-
the applied magnetic field, but, in order to fit the order ofproximate analytical results are discussed in Sec. IV: the
magnitude of these relaxation times, one must introduce adependence of the relaxation time on the applied magnetic
effective surface viscosity connected to the bulk one by thdield is obtained. The temperature dependence of the relax-
macroscopic dimension of the objects that are supposed ttion time is discussed in Sec. V in the framework of a
rigidly participate to the surface orienting phenomenon. mean-field approach. A comparison with the experimental
In this paper we propose a microscopic approach to thelata is presented, showing good agreement. In Sec. VI we
surface gliding effect in terms of a thermally activated pro-summarize our results and outline some possible generaliza-
cess. According to this model, the micelles are rotationallytions.
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A the area occupied by each micelle. Similarly, we can write
the total energy per unit surfagg of the layer in contact
with the solid substrate as
Wn—l,V\ /‘\\Nnﬂ,n
TN TN S\ N2 . ~(K) /0 \N2
D Wn,n-l Wn,n+1 Jo= _‘](<n0>'<n1>) —J I(Zl (nO '<n0>)
U
1 xam 2
-5 NAZ K. H)2+ U, (2.2
(m-1) 6 né (n+1) § where U, accounts for the interaction between the surface
(a) [ layer and the substrate.
In the following we assume that all the micelles lie every-
Woin where parallel to thex,y) plane, such that
wo > A = cosp %+ sinay, (2.33
SN, ()= cosgix+ sind,y, (2.3b
wherex andy are thex- andy-axis unit versors, respectively.
i Therefore,
E Un,n»l
i N _
(1) 6 né m+1) § 2 (n(n))?=N(cog(6,~6)), (249
{b) 0
N
FIG. 1. Schematic representation of the surface potential in the E k) H)Z— NH2<CO§(0 0n))- (2.4b

(a) absence andb) presence of an orienting magnetic field. An
extra elastic contribution is actually present, which contrasts with

the diffusion in the absence of field. We now make the expansion

Il. SURFACE MOLECULAR ENERGY MODEL ;1= Hiial, (2.5

Let us consider a semi-infinite nematic lyotropic sample S
extending in the regiom> 0 of a Cartesian coordinate frame, 0M which it follows that
with the z=0 plane coincident with an isotropic solid sub- o do |2
strate. A magnetic fieldH is applied parallel to thexy) (M) - (Nj+1))2=cos( ei—aitl);1_<_l> 12, (2.6)
substrate plane at an anglg with respect to thex axis. We dz
suppose that the nematic lyotropic sample can be modeled . .
an assembly of layers, parallel to the solid substrate, havingsonsequently, apart from inessential constants,
a thicknesd comparable with the molecular short diameter. de.\2 L
Each layer is labeled with an indéx0,1,2,. . ., where the gi:23|2(_'> —J'N(co(6;— 6,))
zeroth layer is the one in contact with the substrate. dz
We make an Ising-like mean-field modé] for the inter- 1y
action between the layers. Therefore, for a given bulk layer — = 22TH2(coS( 6, — 6)) 2.9

i>0, we write the total energy per unit surfageas 2 A
and
== J0KM) - (i) 2+ () (M -1))?] AL _
N go=1J17 a9z —J'N(cos' (6o~ o))
—0 3 (AP~ 2{;‘;2 (RY-H)2. @20 .
k=1
- 5 SH2cog (b )+ Up. (28

Here ﬁi(k) is the nematic director for thkth micelle in the To connect the microscopic parameters entering in Egs.

ith layer; (n;) is its average in the layed is the coupling (2.7) and(2.8) with the usual macroscopic constants appear-
constant between adjacent layeds;is the self-coupling in  ing in the framework of the continuum elastic thegty0],
each layer, favoring a homogeneous orientatigy);, is the =~ We write

micellar diamagnetic anisotropy, which we suppose positive; 0 “

and finally, N is the number of micelles in each layer and 6" =6,+A6", 2.9
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where by definition(A 6,)=0, such that Ill. MASTER EQUATION
AND FOKKER-PLANCK APPROXIMATION

9NV =1—(Ap.2
(cos(6,~ 6))=1-(A6) (210 Let us suppose that the possible angular positions of the

and surface micelles are quantized according to

— 6,=né =0,x1,+2,...). 3.1
(cog(6;— 0y))={(coS(8;— Oy +A6,)) n=no (1 ) @1

. - itor We call P,, the probability to find a micelle with the orien-
=(coS(6,~ O) —Sin2(6,— 64) 1A 6) tation 6,,. Evidently, the time evolutions of the probabilities
— co§(6_i— O). (2.1 obey themaster equation

: : dpP
Consequently, the total energy per unit surface of itte n=Wnilvnpnil+wn+l'npn+l_(Wn’n71+Wnyn+l)pn,

bulk layer (2.7) becomes, apart from inessential constant dt

terms, (3.2
do.\2 1 o whereW, , is the transition probability between two adja-
gi:23|2(_' + J'N<Agi2>__Xﬁ“HZCog(gi_gH)_ cent anglesd, and 6,,, with n—m==*1 (see Fig. 1L Ac-
dz 2 A (2.12 cording to statistical mechani¢9]
. . . . 1 UmMs)—U(m=1/2) 5]
According to the continuum elastic theory, in the one- Wm,mﬂ:T—Oex KgT ., (33

constant approximation the bulk energy densitjlik

1 1 whereKg is the Boltzmann constanit, the absolute tempera-
f=-K(V0)2— =x,H%coS(0— 6y, (2.13 ture, and 7-51 the trial frequency. In Eq. (3.9

2 2 U (m=1/2)61-U(mS) represents the height of the barrier
that a micelle has to overcome to jump between adjacent
angular positions. Fof<1, according to Eq(2.18), we can
write

whereK is the usual Frank elastic constant apdthe dia-
magnetic anisotropy. In our geometry, whetanainly de-
pends on the distancefrom the surface, we can make the
approximation

vo2e 76\ ae)z (aa 2 (A% [d6\?
( )o= & + W + E = A + E . . o
(2.14 + e sin2(0p,— «9)]}5), (3.9

1 1 )
Wm,mtlzT_OeXF< - UOIE{hZS"[Z( Om— )]

By comparing Eq(2.12 with If given by Egs.(2.13 and  \ypere
(2.14), we arrive at
Ul (M=1/2) 81— Uy(MS)
K KI Up=

= — [ p— = KgT
J a0’ J INA’ Xam= XaAl. (2.19 B

(3.5

is the height of the barrier, which we suppose constant, be-
By neglecting in Eq.(2.13 the small variations of the tween two adjacent angular positions due to the surface an-
twist angle g in the (x,y) plane, standard calculations give choring energyh and « are the normalized magnetic field

for the actual stable profilEl] and elastic constant, respectively,
de\? y,H? XamH? Kl
i — . _ 2: am —
(dz m SirP(6— 6y). (2.16 h WeT' T 2T (3.6)
Then, from Eq.(2.8) we have In Eq. (3.4) we have omitted the subscript 0 on the angles for
the sake of simplicity. Note that in E¢3.4), the term pro-
goA=(U), (2.17  portional toh? is connected with the drift of the surface

micelles toward,, , whereas the term proportional kocon-
wherel{ can be identified as the total energy of a surfacerasts with the diffusion. The height of the barrigy renor-
micelle malizes the trial frequency, allowing us to define the charac-
teristic diffusion time

_ 1 252 R 1 2GR
U= ZXamH Sl (00_ 0H)+§XamH Sl (QO_GH) TZTOeXF(UO)_ (3.7

The average surface twist angleén Eq. (3.4) defines the
direction of the macroscopic surface director, which is the
eigenvector associated with the positive eigenvalue of the
with Uy= U/ A. traceless surface order parameter

1 _
—EKI COS(Bo— 6o) + Uy, (2.18
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nen— =l
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)

wherel is the identity tensor. In the diagonal frame

- )

where Oss<1 is the two-dimensional surface order param-
eter

0

. (3.9

0

s=/(2(cog6)— 1)+ (sin(26)). (3.10
According to the previous definition
— | (sin(26))

f=tan ! m . (3.11)

In the limit of small jumpsé—0, we can perform the
expansions

P P +(9P5 102P52 3.12
nt1= (0)_&_6 +§a—02 , (3.123
W —W06’—0+W5+ ‘92W52 3.12
hr1n=W(0,0" = )_5_6 P , (3.12bh
W, =W(0,0' = +(9W5 102W52 3.12
nn+1— (010 _0)—W +§&0/2 ' ( . Q

with

1

W(6,0’=9)=;, (3.13a
aW_ 1 du 313
90  2rde’ (3.130
aW_ 1 du 313
90~ 2740 (3130
aZW_ 1 ({du\? 1 d% 313
9% " 47\de) 27 de (3139
azw_ 1 /du\? 1 d% 313
502" 2:\da) ~ 27 de® (3139

where, according to Eq2.18),

—U,

u(9)= u %hzsinz(a_— Oy) + h2sir?(6— 6,)

KgT

+ K SINF(6—6). (3.19
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In this continuume approximation, the master equatit82)
therefore reduces to theokker-Planckequation for the prob-
ability densityP(6,t),

JP 9 (du PP a1
W—ﬁ@'f) +W' (3.19

with t’=Dt the normalized time, wherB is the rotational
surface diffusion coefficient

52

D=Ilim—.
5—>OT

(3.19

IV. ANALYTICAL AND NUMERICAL RESULTS

From the Fokker-Planck approximati¢®.15), the steady-
state solutiorf11] readily follows

exg —u(0)]

w

)

As expected, it is a Boltzmann distribution. For a sufficiently
well-peaked distribution, we can set

Ps( 0)=

4.1
exqd —u(6)]de

0_z<e>=f0”a7>(e)do 4.2
such that, from Eq(3.15),
do  /du
= "\q5/)" 4.3

By neglecting the fluctuationgl1], one then arrives at the
approximate evolution equation of the average angle

o h2sin 2( 6, — 6)], (4.9
whose solution, for&?t’ =0)=0,is
B(t')= 6, —tan [exp —2h%t tandy]. (4.5

According to Eq. (4.5, the (unnormalized relaxation
time 7 is inversely proportional to the square of the applied
magnetic field

1
TH:W' (46)
This H ™2 power law is in agreement with the experimental
findings [5—7]. In Sec. V we shall perform a quantitative
comparison of our theoretical predictions with the experi-
mental data obtained by Oliveira and co-workgss 7).

In Fig. 2 we show the steady-state probabiktyobtained
by numerical integration of Eq3.2) in the absence of mag-
netic field, for two values of the normalized elastic constant
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FIG. 2. Steady-state probability distributioRs for h=0, 50
6=m/100, and two different values ok: (k=10, solid line; - =
k=200, dashed line The numerical solution of the master equa- //0/"’
tion and the analytical result of the Fokker-Planck approximation —_ ﬂ/’/
coincide. %0 /0/
E‘ 25 / 005
(k=10, solid line;x=200, dashed line The average twist | / .
angle @ is evidently arbitrary and depends solely on the ini- it 4
tial conditions. Fors sufficiently small(here 6= 7/100) this /
numerical solution practically coincides with the analytical 00 - o
solution (4.1) of the Fokker-Planck continuum approxima- 0 . 8 ldeg)
tion. According to Eqs(3.14 and (4.1), the width of the 0 100 200
steady-state distribution is inversely proportional to the (b) t’
square root of the elastic constant. .
The time evolution of the average twist anglés shown FIG. 3. Time evolution of the average twist angleas a func-

in Fig. 3 for dh_‘ferent valyes of the normalized magnetic field jo, of the normalized time’ for 6= #/100 and 0= l4. (3)

h and normalized elastic constaktand for the same value —1 with «=10 (long-dashed line and «=200 (short-dashed
6=m/100 as before, witlf,= /4 and6(t’=0)=0, where |ine). The solid line(circles is the analytical solutior{4.5) with
t’=Dt is the previously defined normalized time. The initial h=1 (h=0.95). The inset shows the probability distribution
probability distributionP(t'=0,0) is taken as the steady- P(4,t’) corresponding to the long-dashed curve as a function of
state solutionP4(#) in the absence of a magnetic field. In gfort’=0, 0.4, and 1.6from left to right. (b) Same asa), but for
Fig. 3@ the amplitude of the normalized magnetic field is x=10 andh=0.1 (long-dashed ling the analytical solution is plot-
h=1. The long(shor) dashed line is the numerical solution ted for h=0.1 (solid line) and h=0.095 (circles. The probability
corresponding tac=10 («=200). The solid line is the ana- distributions in the inset are far =0, 41, and 163from left to
lytical approximate solutio4.5) of the Fokker-Planck equa- right).

tion: it does not depend o, i.e., on the width of the steady-
state distribution, since we neglected the fluctuations ir] . . ,
deriving Eq.(4.5). As it is evident, the relaxation time some- '@xation time 7, on temperature, close to the first-order
how depends orx. However, this effect can be taken into ¢l€aring pointT. (see Table Il of Ref|6]). This dependence
account by simply rescaling the magnetic fiedd this is cannot pe ex_plalned by t_he temperature.varlatlon of the dia-
shown by the circles in Fig.(8), which correspond to the Magnetic anisotropyy,: in fact, according to Eq(4.6),
analytical solution4.5) with h’=0.95h. This rescaling ih =~ A7n/74=—Axa/xa. NOW x, decreases as the temperature
independent, as shown in Fig(b3, in which h=0.1. The increases, in a way essentially proportional to the bulk nem-
insets in Fig. 3 show the probability distribution for three atic order paramete® [1]; this would therefore give an in-
successive values of time. For larger values of the magneticrease in the relaxation time; with temperature, contrary to
field h, the drift of the distribution is accompanied by a what is observed experimentall$]. Moreover, for typical
squeezing, while for smalldr the evolution is practically a variations of the nematic order paramefté}, the effect due
rigid translation. This is evident from Eq&3.14 and(4.1), to the temperature variations gf, is about 20 times smaller
which show that under stationary conditions, whereg,,,  than the observed temperature variations pf

the width of the distribution is inversely proportional to  In order to explain this temperature dependence, we as-
JhZ+ k. However, as we shall see in the following, in prac- Sume that the depth of the potential wa}j [see Eq(3.5)]

tical casesh?<« and therefore the field-induced squeezingdepends on the nematic order parame&ein the isotropic

of the probability distribution is completely negligible. phaseS=0, we expectio=0. For increasing values &we
expectug to increase. Therefore, by expandingin power
V. TEMPERATURE BEHAVIOR AND COMPARISON series ofS, the leading term expansion will be simply

WITH THE EXPERIMENTAL DATA

The experimental data of the time evolution of the surface
director gliding show a rather strong dependence of the re- Up= aS. (5.
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This mean-field approximation is similar to the behavior for

the angular anchoring energy proposed in R&?].
In the nematic phase, foF<T., S is approximatively

given by[13]
S=A4\/1
A1— _O,

whereTy—T.=1 °C[1]. From Egs(5.1) and(3.7), neglect-
ing the small temperature dependence9f at first order in
T—T,. the characteristic diffusion time varies with tem-
perature according to the linear dependence

(5.2)

T(T):T(Tc)+B(T_Tc)a (5-3)
where
_ T(Tc) 70
B 210 " HTa) 69

Consequently, the temperature dependence of the magneﬁ

relaxation timg(4.6) describing the surface director gliding is
written

TH(T) = (T + Bu(T—To), (5.9
where
B
The experimental results reported if6] give
Bu=-56s/°C! for H=8kG. According to [14],

xa=10"8 (cgs unit$, while the molecular density=1/Al is
of the order of n=3x10'° cm 2 [15]. Therefore, for
H=8 kG we haven?=2.6x10 ’. We note also thalt=60

A [16]; hence, with the elastic constamt=10 % dyn,
x=8. We can estimate the elementary angular juhgs the
ratio between the distange between two pinning centers
and the length. of a micelle; takingp=2 A andL=100 A
[16], one obtainsd=p/L=2x 102 rad. The trial frequency
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FIG. 4. Comparison between the experimental daguarey
and the theoretical predictidfull line) for the relaxation timer, as
a function of temperature. The error bars represent a 10% error on
the experimental data.

surface by a periodic potential having equally spaced minima
parated by barriers having the same height. The application
of an external magnetic field induces a critical state that does
not correspond to an equilibrium situation and therefore
tends to relax. This phenomenon is well known in the case of
magnetism as an “aftereffect” or “magnetic viscosity” and

in the case of superconductivity as the “creep of floji8].

We have given a formulation of the gliding process in
terms of a master-equation describing the jumps between ad-
jacent angular positions. In the continuum limit the master
equation reduces to a Fokker-Planck partial differential equa-
tion. Its steady-state solution gives the expected Boltzmann
distribution, whereas the time evolution for the average ori-
entation has been obtained approximately by suitably ne-
glecting the fluctuations. A comparison between the numeri-
cal solution of the master equation with the approximate
analytical results has shown the substantial correctness of the
latter. The relaxation time has been found to be inversely
proportional to the square of the applied magnetic field, as
experimentally observed. We have also developed a simple
mean-field description of the surface pinning potential that is
able to reproduce the observed temperature dependence of

75 is of the order of the molecular vibration frequencies, the relaxation times.

7o 1=10" Hz[17]. With these values, from E¢5.6) we get
—5.8x10°° s/°C1; consequently, from Eq5.4), we
have 7(T.)=10° s. Hence, at H=8kG, (T,
=7(T.)/6°h?=9.7 s. For T,—T=4°C, then 7y(T)

=234 s, in good agreement with the experimental valu

mw(T)=250 s reported in Ref6]. The comparison with the
full data presented in Ref6] is shown in Fig. 4. We note
also that with these data 8&=T. we get a depth of the
potential well per micelle of the order afyKgT=0.3 eV,
which is a reasonable value for the interaction energy b
tween one micelle and the substrate.

VI. CONCLUSION

e_

A possible extension of our model is to consider a distri-
bution of barrier heights centered around some mean value:
such a distribution is expected to modify the details of the
time evolution of the average orientation, but not to change
econsiderably the dependence of the relaxation time on the
applied magnetic field. Our model could also be extended to
Berreman-like geometric anchorinffs9], where the surface
anchoring has a geometrical contribution connected to the
topography of the surface. In this case the pinning potential
should be substituted by the total elastic energy connected
with different surface geometries.
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